

Invasive rat colonization history and movement dynamics in Haida Gwaii

Bryson Sjodin*, Robyn Irvine†, Gregg Howald‡ & Michael Russello*

Presenter: Bryson Sjodin Date: June 21st, 2017

*Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada †Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, & Haida Heritage Site, Parks Canada, Skidegate, BC, Canada ‡Island Conservation, Santa Cruz, CA, USA

Why do we care about invasive species?

- Predation/competition
- Niche displacement
- Disease
- Hybridization/Introgression
- Extirpation & extinction

Invasive species have huge economic impacts

\$220 billion/year – USA (2011)

- \$1.4 trillion/year Global (2013)
- Removal, agriculture losses, disease treatment/prevention, etc.

We need efficient management strategies

Where should we focus?

Prevention is best

Containment/eradication costly

We need efficient management strategies

Where should we focus?

Prevention is best

Containment/eradication costly

Genetics can inform management decisions

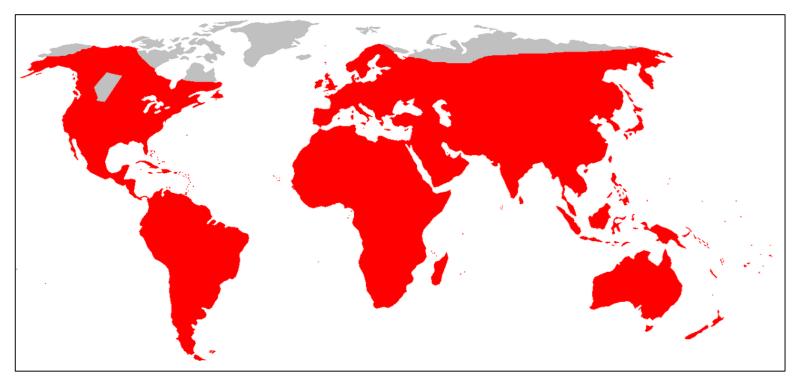
What can we learn about invasives using genetics?

Historical origin(s)

Number of introductions

Invasion pathway

Rats are among the most invasive mammals...



By Kilessan - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9002871

By Reg Mckenna - originally posted to Flickr as Wild Rat, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=3875126

...and have a widespread distribution

 $https://en.wikipedia.org/wiki/Brown_rat\#/media/File:Brown_rat_distribution.png$

Rats are generalist omnivores with high reproductive rates

- 8-10 pups/litter
- 5-7 litters/year
- Can reach sexual maturity as early as 4 weeks old

http://www.kimballstock.com/pix/ROD/03/ROD_03_KH0006_01_P.JPG

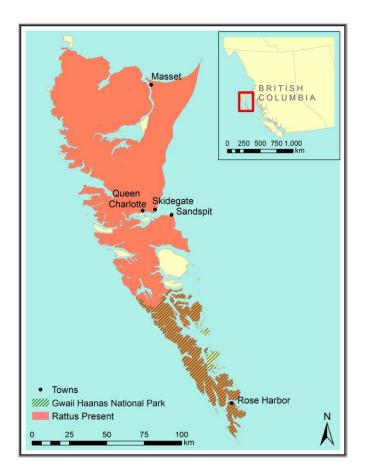
Rats are excellent competitors

- Outcompete/predate upon native fauna
- Can lead to range contractions, declines, extirpations, and extinction
- 40% and 60% of all seabirds and reptile extinctions, with 90% of those occurring on islands

Island fauna are particularly sensitive to rat invasions

- Terrestrial predators are limited/absent
- Seabirds experience most severe impact
- Rats predate on nests (eggs, chicks, adults)

https://static.stuff.co.nz/1361486630/234/8339234.jpg


1.5 million seabirds across12 species nest in Haida Gwaii

- Ancient murrelet (Synthliboramphus antiquus)
- Cassin's auklet (Ptychoramphus aleuticus)

Rats invaded Haida Gwaii in the 1700s

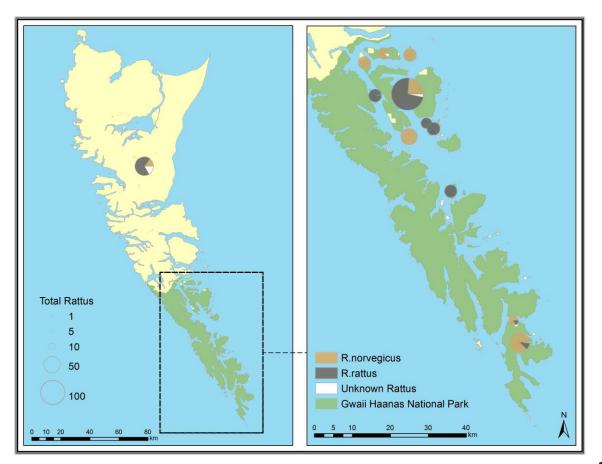
- Found on at least 20 islands
- Rats have caused at least 6 seabird species declines

Eradications to promote seabird recovery

- Langara, Lucy, Cox (1997)
- St. James (1998)
- Arichika (2011)
- Faraday and Murchison (2012)
- Bischofs* (2003, 2011)

Research Objectives

- 1) Identify/quantify extent & direction of gene flow among populations
- 2) Test re-invader vs. survival hypothesis for Bischofs
- 3) Reconstruct global origin(s) of brown rats in Haida Gwaii

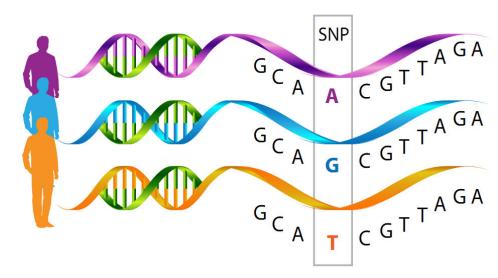


Preventing Extinctions

551 rats sampled from 2008-2016

- n=290, *R. rattus*
- n=246, *R. norvegicus*
- n=15, unknown

Ears were removed for genomic analysis



Whole genomic DNA was extracted and genotyped

Use to construct double digest restriction site associated DNA

sequencing (ddRAD) libraries

- Single nucleotide polymorphisms (SNPs)
- No *a priori* knowledge
- Many individuals
- Low cost

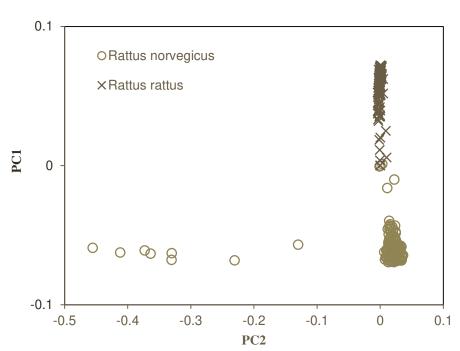
https://neuroendoimmune.files.wordpress.com/2014/03/snp.png

288 samples have been sequenced

Raw data processed and demultiplexed

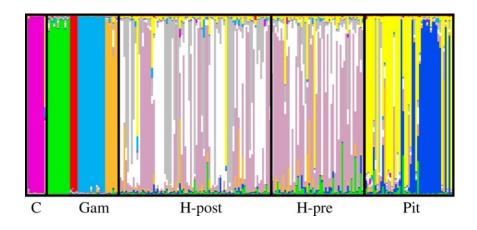
Alignmed to reference genome

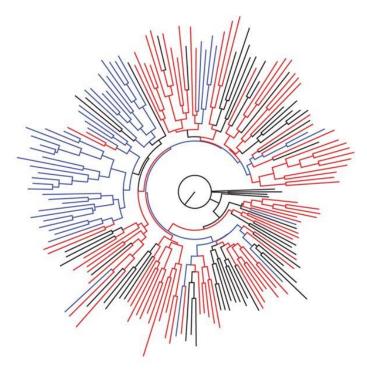
Library	No.Reads	No.Base Pairs	Quality
1	217,226,502	54,306,625,500	34.5
2	236,254,061	59,063,515,250	35
3	257,468,458	64,367,114,500	34


Identify and Genotype SNPs

Species	No.Loci	Coverage
rattus	21 906	16.7x
norvegicus	12 177	16.9x

Identify species


• SNPRelate, ADMIXTURE



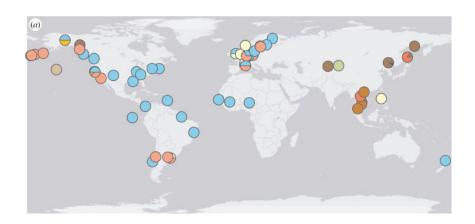
Identify population structure

Model/distance based clustering



Adapted from Amos et al. 2016

Survivor vs reinvader on the Bischofs


 Identify a bottleneck (change in allele frequency, heterozygosity excess)



Adapted from Russell et al. 2009

Identify global origin of brown rats - Fordham University

mtDNA haplotypes, clustering methods

From Puckett et al. 2016

Implications for invasive rat management

- Identifying candidate islands for eradication
- Defining eradication units
- Determining efficacy of eradication

Develop a better understanding of invasion processes

Acknowledgements & Funding

Adam Ford (UBCO)

Chris Ashurst (Gwaii Haanas)

Emily Puckett (Fordham University)

Evelyn Jensen (UBCO)

Goox Beaton (Gwaii Haanas)

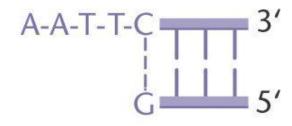
Jane Park (Fordham University)

Jason Munshi-South (Fordham University)

Matthew Waterhouse (UBCO)

Richard Kennedy (Gwaii Haanas)

Preventing Extinctions

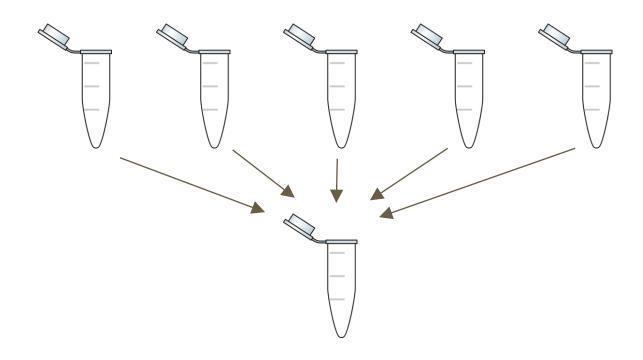


Start by digesting gDNA with two restriction enzymes

- Produces many fragments of variable size
- Fragments have "sticky ends"

Fragments with sticky ends

Ligate barcode and index



Fragments are size selected

http://www.sagescience.com/wp-content/uploads/2014/01/pippin-prep-hero.png

Individuals are pooled into libraries, amplified

