Bacterial diversity and virus discovery in the invasive yellow crazy ant

Meghan Cooling¹, Monica Gruber¹, Ben Hoffmann² and Phil Lester¹ Victoria ¹School of Biological Sciences, Victoria University, New Zealand ²CSIRO Sustainable Ecosystems

Te Whare Wānanga o te Ūpoko o te Ika a Māui

Population Collapses of Invasive Species

- Uncommon, rarely documented or studied
- Giant African land snail disease syndrome
- Pathogens often invoked but rarely investigated

Biological Invasions 6: 161–172, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Now you see them, now you don't! - population crashes of established introduced species

Daniel Simberloff * & Leah Gibbons Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA; *Author for correspondence (e-mail: dsimberloff@utk.edu; fax:+1-865

Pathogens in Ants

- Red imported fire ant (*Solenopsis invicta*)
 - Surveys in native range
 - Fungi, microsporidia, bacteria and viruses

Left: normal queen ovary with eggs Right: ovary from SINV-3 treated colony with very few eggs present Scale bar is 500um Figure from Valles *et al.* (2013)

Red imported fire ants

journal homepage: www.elsevier.com/locate/jip

Successful transmission of Solenopsis invicta virus 3 to *Solenopsis invicta* fire ant colonies in oil, sugar, and cricket bait formulations

Steven M. Valles^{*}, Sanford D. Porter, Man-Yeon Choi, David H. Oi

Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA

- Notorious invader worldwide
- Multiqueened colonies
- Can reach extraordinarily high densities
 - i.e. Christmas Island- invasional meltdown
- Boom and bust cycles
 - Seychelles (disappearance)
 - Tokelau (declines)
 - Arnhem Land (variable)

- Notorious invader worldwide
- Multiqueened colonies
- Can reach extraordinarily high densities
 - i.e. Christmas Island- invasional meltdown
- Boom and bust cycles
 - Seychelles (disappearance)
 - Tokelau (declines)
 - Arnhem Land (variable)

- Notorious invader worldwide
- Multiqueened colonies
- Can reach extraordinarily high densities
 - i.e. Christmas Island- invasional meltdown
- Boom and bust cycles
 - Seychelles (disappearance)
 - Tokelau (declines)
 - Arnhem Land (variable)

- Notorious invader worldwide
- Multiqueened colonies
- Can reach extraordinarily high densities
 - i.e. Christmas Island- invasional meltdown
- Boom and bust cycles
 - Seychelles (disappearance)
 - Tokelau (declines)
 - Arnhem Land (variable)

- Notorious invader worldwide
- Multiqueened colonies
- Can reach extraordinarily high densities
 - i.e. Christmas Island- invasional meltdown
- Boom and bust cycles
 - Seychelles (disappearance)
 - Tokelau (declines)
 - Arnhem Land (variable)

Yellow crazy ants in Arnhem Land

- First recorded in 1984
- Discrete populations
- Formerly successful, large populations have been observed to shrink and/or disappear

Aims

- Identify pathogens and mutualists infecting yellow crazy ants
- Determine if expanding and declining populations differ in their viral and bacterial communities

Viruses and bacteria in yellow crazy ants

- Next generation sequencing to look for viruses and bacteria
- Viruses common in Hymenoptera (ants, bees, wasps, sawflies)
- Can be very host specific and highly pathogenic

Viruses and bacteria in yellow crazy ants

- Next generation sequencing to look for viruses and bacteria
- Viruses common in Hymenoptera (ants, bees, wasps, sawflies)
- Can be very host specific and highly pathogenic

BIOLOGY LETTERS

rsbl.royalsocietypublishing.org

Cite this article: Sébastien A, Lester PJ, Hall RJ, Wang J, Moore NE, Gruber MAM. 2015 Invasive ants carry novel viruses in their new

Community ecology

Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen

Alexandra Sébastien^{1,†}, Philip J. Lester^{1,†}, Richard J. Hall², Jing Wang², Nicole E. Moore² and Monica A. M. Gruber¹

¹School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand ²Institute of Environmental Science and Research, 66 Ward Street, Upper Hutt, New Zealand

Bacteria in yellow crazy ants

- Microbial community of an insect can have both positive and negative effects on host health, reproduction and longevity
- Mutualistic bacteria:
 - Provide essential nutrients
 - Mediate host thermal tolerance
 - Enhance pathogen/parasitoid resistance
- Gruber (2012) found positive correlation between yellow crazy ant abundance and bacterial diversity

Bacteria in yellow crazy ants

- Microbial community of an insect can have both positive and negative effects on host health, reproduction and longevity
- Mutualistic bacteria:
 - Provide essential nutrients
 - Mediate host thermal tolerance
 - Enhance pathogen/parasitoid resistance
- Gruber (2012) found positive correlation between yellow crazy ant abundance and bacterial diversity

Genetic diversity is positively associated with fine-scale momentary abundance of an invasive ant

Monica A. M. Gruber¹, Benjamin D. Hoffmann², Peter A. Ritchie¹ & Philip J. Lester¹

¹School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand ²CSIRO Ecosystem Sciences, Tropical Ecosystems Research Centre, PMR 44, Winnellie, Northern Territory, 0822, Australia

Methods

- Collected queens from 6 sites (2 high density/expanding, 2 medium density/declining, 2 low density/declined)
- Illumina sequencing done on 5 queens from each site
 - RNA, sequenced whole genome (HiSeq 2 x 100bp PE)
 - DNA, amplified with 16S universal bacterial primers (MiSeq 2 x 300bp PE)

RNA results

- 20 hits to viral sequences found in low and medium-density sites
- BLASTx search against non-redundant nucleotide database in GenBank on viral sequences

Viruses in yellow crazy ants

- Three types of viral sequences, RNA polymerase gene (99% identity)
- Tentatively grouped with the Dicistroviridae
- Next step was PCR assays with viral primers

Viruses in yellow crazy ants

- Three types of viral sequences, RNA polymerase gene (99% identity)
- Tentatively grouped with the Dicistroviridae
- Next step was PCR assays with viral primers

Viruses in yellow crazy ants

- Designed primers for unidentified viral sequence
- Surveyed for common honey bee viruses
- RT-PCR of 2013/2015 queens and 2013 workers for:
 - Unidentified viral sequence
 - KBV, BQCV, ABPV, IAPV, DWV, LHUV-1

Found: All samples contained potential novel virus and black queen cell virus

- Viruses can be ingested
- Next step is to investigate replication

Honey bee pupa infected with black queen cell virus

- No significant differences in bacterial community structure at order level between site types
- ANOSIM (R= -0.056, p= 0.533)

Pathogenic bacteria

Rhabdochlamydia

Pathogenic bacteria

- Rhabdochlamydia
- Serratia marcescens

Potential pathogens

- Rhabdochlamydia
- Serratia marcescens
- Cardinium

Potential pathogens

- Rhabdochlamydia
- Serratia marcescens
- Cardinium

Potential mutualists

- Enterococcus
- Fructobacillus

Potential pathogens

- Rhabdochlamydia
- Serratia marcescens
- Cardinium

Potential mutualists

- Enterococcus
- Fructobacillus
- Lactobacillus

Conclusions

- Identify pathogens and mutualists infecting yellow crazy ants
 - Possible Dicistrovirus, BQCV
 - Canadidatus Rhabdochylamydia, Serratia marcescens, Canadidatus Cardinium
 - Assortment of potential mutualists, lactic acid bacteria
- Determine if expanding and declining populations differ in their viral and bacterial communities
 - though differences, no obvious patterns indicating observed pathogens play a role in observed population declines
 - unidentified virus could be promising biocontrol candidate

Acknowledgements

- VUW Ant Club
- Dhimurru Aboriginal Corporation
- Conservation Volunteers Australia
- Funding
 - Victoria University Research Trust
 - CSIRO
 - Rio Tinto Alcan

M2 M1 Joom

Site types

